Negative Pressure Pulmonary Edema: An Uncommon Life-Threatening Postoperative Complication

Anis Chaari, MD, DESC* Khadija Adel Buhassan, MBBCH Part 1, Part 2 Arab Board, Dip RA (France)** Haytham Raad, MD, DA, ABA*** Wald Assar, MD**** Dafir Abdulmohsen Alkhudairi, MBBch, FFARCSI*****

Negative pressure pulmonary edema (NPPE) is an uncommon but potentially life-threatening postoperative complication which occurs following sudden upper airway obstruction. Hypoxemia and acute respiratory failure are often severe. Therefore, early recognition and initiation of appropriate treatment are warranted.

We present a case of a twenty-one-year-old male who presented with NPPE due to upper airway obstruction following adenoidectomy. The patient was intubated and sedated to initiate mechanical ventilation. Fluid balance was optimized and weaning off mechanical ventilation was successful under dexmedetomidine infusion. The patient was discharged with favourable outcome.

Negative pressure pulmonary edema (NPPE) is a rare and potentially life-threatening condition. In children, it mainly occurs following upper airway infectious diseases such as epiglottitis or croup. In adults, NPPE is commonly seen in postoperative settings. Rapid onset, severe hypoxemia, and adrenergic storm are the hallmark of the clinical presentation. The diagnosis is usually established based on the clinical scenario and chest X-ray findings. The differential diagnosis includes acute ischemic heart disease and decompensated heart failure.

The risk factors include obesity, sleep apnea, nasal, oral and pharyngeal surgery. The pathophysiology involves sudden changes in the pre and afterload of the heart and/or a rapid relief of a chronic partial upper airway obstruction.

Available data in the literature are limited to case reports or small series as this complication is rarely encountered in the clinical practice. Early recognition and timely initiation of appropriate treatment are of paramount importance to improve the prognosis. The weaning process of these patients is always challenging as it needs optimization of the fluid balance as well as the systolic-diastolic heart function monitoring, appropriate management of the sedation and gradual decrease of the ventilatory support.

The aim of this presentation is to report a severe case of negative pressure pulmonary edema following adenoidectomy.

THE CASE

A twenty-one-year-old male patient, known case of obstructive sleep apnea presented to the Ear Nose and Throat clinic with a complaint of bilateral tinnitus. Enlarged adenoids were seen on fiber-optic scope and the patient had adenoidectomy and bilateral Grommet insertion under general anesthesia. Adenoidectomy was performed by suction cautery and hemostasis was achieved. The procedure was uneventful and the patient was well sedated during surgery. He was extubated after reversal of muscle relaxant. The patient was initially hemodynamically stable and maintaining patent airway and 100% oxygen saturation. Five minutes later, he developed apnea and acute respiratory failure. Continuous Positive Airway Pressure (CPAP) ventilation was transiently applied and then the patient was re-intubated and started on mechanical ventilation. Frothy and pink secretion were suctioned from the endotracheal tube suggesting pulmonary edema. Chest auscultation revealed bilateral diffuse crackles. The diagnosis was confirmed by anteroposterior chest X-ray showing diffuse bilateral alveolar syndrome, see figure 1.

Figure 1: Chest X-ray following Intubation Showing Bilateral Diffuse Alveolar Syndrome Suggesting Pulmonary Edema

* Consultant and Acting Head
** Senior Registrar
*** Consultant
**** Consultant
***** Consultant
****** Consultant and Head
King Hamad University Hospital
Kingdom of Bahrain
E-mail: anis.chaar@khuh.org.bh
The patient was kept on mechanical ventilation with the volume-controlled mode, fractional inspiratory oxygen (FiO₂) at 100% and Positive End Expiratory Pressure (PEEP) at 10 cmH₂O. Plateau pressure was 30 cmH₂O and the lung compliance was low. Arterial blood gases showed severe hypoxemia with a PaO₂/FiO₂ ratio at 48 mmHg. The right internal jugular venous catheter and radial arterial line were inserted. The patient was kept sedated with propofol and remifentanil infusion.

Dopamine and noradrenaline infusion were started as the patient developed hypotension. Electrocardiogram revealed sinus tachycardia. Cardiac enzymes screening was negative. Urgent bedside echocardiogram revealed hyperdynamic wall motion, left ventricular ejection fraction at 65% and grade I diastolic dysfunction. After improvement of the hemodynamic condition, the patient was started on furosemide infusion targeting negative fluid balance. The patient was transferred to the intensive care unit (ICU) for further management. Vasopressors were decreased. Accordingly, weaning from mechanical ventilation was started. Propofol and remifentanil infusions were held and the patient was started on dexmedetomidine infusion which enabled successful weaning and extubation after 4 days of mechanical ventilation. The patient was transferred to the ward after 7 days of ICU stay.

DISCUSSION

Negative pressure pulmonary edema is a rare postoperative complication. The incidence reported in other studies was 0.094% in patients undergoing surgery under general anesthesia²,¹². Although it frequently occurs in healthy individuals, several risk factors have been reported in the literature such as male gender, obesity, obstructive sleep apnoea and nasal surgery²,¹³. The clinical presentation is characterized by sudden onset of frothy secretion, acute respiratory failure and severe hypoxemia following laryngoscopy and intubation. This complication has been reported in only 0.1% of those patients who develop postoperative upper airway obstruction³.

It is commonly accepted that negative pressure pulmonary edema is a form of non-cardiogenic pulmonary edema¹³. However, recent studies suggest that the main mechanism leading to fluid accumulation in the extravascular lung spaces is an abrupt change in the pre and after load condition of the left ventricle⁶,⁷,¹⁰. In fact, the generation of respiratory effort against obstructed airway induces a deep fall of the pleural pressure from an average value of -4 cmH₂O down to -140 mmHg⁷,¹⁴. The effect of this excessive negative pressure on the heart cavities is an abrupt increase of the venous return to the right ventricle as well as an increase of the left ventricle afterload due to the increase of the left ventricle transmural pressure¹⁰. As a result, the hydrostatic capillary pulmonary pressure increases and transudative fluid accumulates in the extra-vascular pulmonary spaces⁷,¹⁰. These hemodynamic disturbances are aggravated by an adrenergic storm that induces further increase in the venous return via the peripheral vasoconstriction, see figure 2⁶,⁷,¹⁰,¹⁴.

Early diagnosis and prompt management are of paramount importance. The main pillars of the treatment are maintaining the patient airway, oxygen supply to correct the hypoxemia, applying positive airway pressure to reverse the left ventricle pre/afterload and optimization of the fluid balance. Although applying positive pressure with the bag-mask is sufficient in most cases, severe cases usually need endotracheal intubation if the upper airway obstruction is not rapidly relieved⁶. For patients requiring intubation and mechanical ventilation, the sedation should be titrated to avoid patient-ventilator asynchronies. Diuretics have been also widely used in case of NPPE¹⁰.

The outcome of patients with NPPE is favorable within 12 to 48 hours⁷,¹⁴,¹⁵. However, severe cases such as our patient may have more complicated course with difficult weaning and even recurrent pulmonary edema¹¹. To the best of our knowledge, using dexmedetomidine for weaning from mechanical ventilation has not previously reported in patients with negative pressure pulmonary edema. Dexmedetomidine is a highly selective α₂-adrenoceptor agonist that has been increasingly used in critically-ill patients⁴. Recent studies highlighted the effectiveness of this drug in reducing the duration of mechanical ventilation in patients with difficult weaning¹²,¹³. Using dexmedetomidine enabled early weaning and extubation of our patient.

CONCLUSION

Negative pressure pulmonary edema is a rare postoperative complication seen in patients with severe and sudden upper airway obstruction. Early recognition is of paramount importance. Securing patent airway is life-saving. Oxygenation and applying positive pressure ventilation are the cornerstone of the treatment. All required investigations...
should be performed to exclude other diagnosis that can induce pulmonary edema (ischemic heart disease, acute heart failure, etc). Although challenging, early weaning should be considered once the oxygenation improves.

Authors contribution: All authors share equal effort contribution towards (1): Substantial contribution to conception and design, acquisition, analysis and interpretation of data, (2) Drafting the article and revising it critically for important intellectual content (3): Final approval of manuscript version to be published. Yes.

Conflict of Interest: None.

Competing Interest: None.

Sponsorship: None.

Acceptance Date: 8 September 2018.

Ethical Approval: Approved by the Research and Ethics, King Hamad University Hospital, Bahrain.

REFERENCES