Status Epilepticus: An Intractable Case with a Successful Outcome

Mohamed Mourad Hashim, MD, DESA* Karim Abdel Hakim, MBBCh, MD** Mohammed Elbahr, MBBCh, MSc*** Mahmoud Etman, MBBCh, MSc*** Eamon Tierney, MB, FFARCSI, FJJICMI****

A thirty-two-year-old male patient with a history of fever presented with generalized tonic-clonic convulsions and a low Glasgow Coma Score (GCS); an endotracheal tube was inserted to secure his airway.

The patient had malignant generalized tonic-clonic convulsions for six weeks, he was diagnosed as status epilepticus (SE) on the electroencephalogram (EEG). Achieving control was very difficult even with various antiepileptic medications. More than six antiepileptic drugs were used in addition to continuous infusion of anesthetic medications to control the convulsions.

After four-months in the ICU, the patient became fully conscious with no residual neurological deficit and good control of convulsions but with generalized muscle weakness. The patient was eventually transferred to the regular ward and was discharged after few days.

THE CASE

A thirty-two-year-old Indian male was unconscious and agitated after suffering a generalized tonic-clonic convulsion while driving. There was a history of fever and contact with a roommate who had a skin rash two days prior to admission, but there was no previous history of convulsions.

The patient had a Glasgow Coma Score (GCS) of 7; endotracheal intubation was inserted to secure the airway. The brain CT scan was normal and the CSF analysis was inconclusive. The patient started empirically on ceftriaxone, acyclovir and steroids to cover both bacterial and viral infections. After a few days, MRI and venogram (MRV) revealed a transverse sinus thrombosis. Therapeutic anticoagulation was commenced. Two weeks after admission, a cerebral angiogram was performed for the possibility of in situ thrombolysis. The angiogram showed spontaneous recanalization of the lesion.

The patient had generalized tonic-clonic convulsions and SE on EEG for six weeks. He was started initially on Phenytoin, followed by continuous infusions of Propofol and Midazolam. Clonazepam, Levetiracetam, Topiramate and Sodium Valproate at maximum doses for two weeks. In the second week of admission, a percutaneous tracheostomy (PCT) was performed and the patient was kept on controlled ventilation.
Over the following few weeks, some different anticonvulsant and anesthetic drugs were used to control the seizures, see Figures 1-4. Figures 1 to 4 demonstrate the agents used, the doses given and the duration of their usage. A follow-up brain MRI revealed biparietal acute ischemic insults and bilateral sphenoid and ethmoidal sinusitis.

The patient continued to have seizures; therefore, high doses of Propofol (up to 1 gm/hr) and Midazolam (60 mg/hr) were initiated. Continuous EEG monitoring was applied aiming for burst suppression and EEG silence. Antiepileptic drug doses were maximized without obtaining full control of the convulsions.

The phenobarbital dose of 240 mg every 6 hours achieved control of the generalized convulsions except focal twitches.

Slow weaning of propofol and midazolam was achieved and the patient was kept on six anticonvulsants: Phenobarbital, Lacosamide, Topiramate, Levetiracetam, Clonazepam and Phenytoin, which achieved good control of the convulsions.

The patient started to regain consciousness, but with severe muscle weakness and disorientation; therefore, mechanical ventilation had to be continued. Slow weaning from the ventilation was initiated, but the patient developed sepsis (ventilator-acquired pneumonia-VAP) with uncontrolled convulsions; therefore, the Propofol infusion was restarted with a maintenance of the dose of Phenobarbital of 240 mg/8 hours.

After sepsis treatment, mechanical ventilation weaning was commenced with aggressive physiotherapy. The patient became awake with weak muscle power, but with good mental status and the ability to obey simple commands.

The patient’s alertness slowly improved; he became better orientated, his muscle power improved and all his invasive lines (Foley’s catheter, nasogastric tube, central venous catheter and arterial line) were removed.

The patient became fully conscious with no residual neurological deficit and with good control of convulsions using Phenobarbital, Phenytoin and Lacosamide.

Intensive physiotherapy led to the improvement of the muscle power; the patient was transferred to the high dependency unit (HDU) and eventually to the regular ward, where he stayed for twelve days before going home. He had no more generalized tonic-colonic seizures, but still had some facial twitches during speaking or straining. The patient was mobile, but due to lower limb weakness, he was able to walk only for few steps with support and assistance.

DISCUSSION

Patients who continue to have either clinical or electroencephalographic fits after receiving adequate dosages of first and second line antiepileptic medications are considered intractable while persistent seizure activity after administration of high-dose intravenous anesthetics is considered to be malignant SE17,5.

Most episodes of SE develop without a prior history of epilepsy; they are almost always secondary to an underlying structural or metabolic-toxic problem, brain anoxia and encephalitis1,5,18. The essentials in managing SE are as follows: management of breathing and circulation to stop seizure activity and treat the underlying cause19. Intravenous Lorazepam is the drug of
choice to treat SE in the first instance. Phenytoin remains the second-line agent.

After failure of the first and second-line drug therapy, the third-line should be administered, but there is limited evidence to guide the systematic addition of the third-line anticonvulsants in SE. Despite Pentobarbital infusion being associated with fewer breakthrough seizures and treatment failures, many studies suggest that continuous infusions of Propofol or Midazolam should be considered as agents of choice in RSE because of the better side-effect compared to Pentobarbital. When coma-inducing agents are employed, coma should be maintained for at least 24-48 hours.

Malignant SE that are refractory to Propofol; Midazolam and/ or Pentobarbital, Ketamine infusion has occasionally been successfully used.

Anticonvulsant agents including Lacosamide and Topiramate should not be considered in malignant SE. Inhalational anesthetics, particularly Isoflurane, should be reserved for salvage therapy when other agents in anesthetic doses are ineffective or have produced unacceptable side-effects.

Other newer promising treatment regimens for malignant SE include surgery if a localized area is causing the seizure, electroconvulsive therapy, hypothermia and a ketogenic diet.

In our patient, there were several factors that predicted a poor outcome: no previous history of seizures, an accompanying transverse venous sinus thrombosis, biparietal acute ischemic insults, potential hypoxic brain injury, low initial Glasgow Coma Score, sepsis and prolonged duration of the status epilepticus.

CONCLUSION

To our knowledge, this is the first published report describing an excellent cognitive recovery in a patient after six weeks of continuous seizure activity which remained uncontrolled even after the administration of intravenous anesthetic drugs (Propofol and Midazolam) and six oral antiepileptic medications. Therefore, excellent neurological recovery is possible after prolonged malignant status epilepticus, in young patients with malignant SE who have limited brain damage need a significant period of intensive pharmacological therapy to show signs of recovery and in malignant SE; it is important to target burst suppression relentlessly even if heroic doses of intravenous anesthetic drugs have to be administered.

Author Contribution: All authors share equal effort contribution towards (1) substantial contribution to conception and design, acquisition, analysis and interpretation of data; (2) drafting the article and revising it critically for important intellectual content; and (3) final approval of the manuscript version to be published. Yes.

Potential Conflicts of Interest: None.

Competing Interest: None. Sponsorship: None.

Submission Date: 26 March 2015. Acceptance Date: 6 October 2015.

Ethical Approval: Approved by the Research and Ethics Committee, King Hamad University Hospital, Bahrain.

REFERENCES