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ABSTRACT
Background: Alzheimer's disease (AD) leads to cognitive dysfunction among older people worldwide, making it 
nearly impossible for them to carry out their daily lives. Due to the inherent characteristics of Alzheimer's disease 
and its impact on the brain, timely intervention is crucial to delay its onset and mitigate its progression. Currently, 
the diagnosis of Alzheimer's disease often occurs at a stage where it is too late for effective prevention measures, 
allowing the disease to cause significant damage to the brain. The use of machine learning and deep learning 
models is critical for the classification of demented and non-demented cases, but most highly accurate models 
are non-linear and less transparent, not revealing the logic behind the predictions. Therefore, incorporating 
interpretability components into the models will make them more transparent and trustworthy. This study is 
aimed to develop appropriate diagnostic methods capable of assessing Mild Cognitive Impairment (MCI), the 
early stage of Alzheimer's disease that occurs before the irreversible loss of neurons. 

Methods: Explainable artificial intelligence (XAI) refers to AI systems that can provide explanations for their 
decisions or predictions. In the context of AD classification, explainable AI systems aim to provide insights 
into the features or characteristics of the model used to make a prediction. This XAI provides a mechanism to 
understand and interpret the basis of a model's predictions which is more important for improving the trust in 
the system and its results. As such, a non-linear neural network is employed in this work to distinguish between 
demented and non-demented cases while local post hoc explanations are incorporated to make it a glass-box 
model using the XAI techniques such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model 
Agnostic Explanations (LIME).

Results: The application of LIME provided valuable insights into the impact of various factors on predictions. 
Notably, factors such as CDR, Age, and ASF aligned with clinical knowledge and proved instrumental in predicting 
dementia cases. Conversely, features like nWBV, MMSE, and eTIV adversely affected the predictions, highlighting 
their significance in identifying non- demented cases. Similarly, exploring SHAP values yielded a comprehensive 
understanding of the decision-making process employed by the model in detecting Alzheimer's disease.

Conclusion: Through the utilization of explainable artificial intelligence (XAI) methods, this study endeavors to 
develop a dependable and transparent technique for early detection, monitoring, and personalized interventions 
in the realm of Alzheimer's disease.
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INTRODUCTION
The alarming scale of the global impact caused by Alzheimer's disease 
(AD) cannot be overlooked. As per the latest Alzheimer's report, it is 
projected that a new case of dementia will occur approximately every 
3.2 seconds worldwide1. These statistics highlight the significant and 
growing burden of Alzheimer's disease on a global scale2. According 
to research, there will likely be a significant increase in the number 
of people who have dementia, with an estimated increase from 57.4 
million people in 2019 to a staggering 152.8 million by the year 20502,3. 
This significant escalation underscores the urgent need for effective 

preventive measures, improved treatments, and enhanced support 
systems to address the growing impact of dementia on a global scale. 
According to a study published in The Lancet Public Health in 2022, 
the global cost of dementia in 2019 is estimated to be a staggering US$1 
trillion. This figure reflects the significant economic burden associated 
with dementia on a global scale. The comprehensive impact of this 
burden has yet to be fully quantified and accounted for, highlighting 
the complex and multifaceted consequences of Alzheimer's disease on 
individuals, caregivers, and society. 
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Alzheimer's disease is a progressive neurological condition marked 
by memory loss and a deterioration in cognitive function over time1,4. 
It is the most prevalent form of dementia, a term encompassing 
various cognitive impairments that affect daily functioning. The 
buildup of plaques and tangles in the brain, as well as the destruction 
of neural connections, are linked to the onset of Alzheimer's disease 
(Alzheimer's Disease Fact Sheet, n.d.). As the disease advances, it 
leads to the deterioration of memory, thinking skills, and the ability to 
carry out daily responsibilities. It involves complex changes, including 
the formation of abnormal protein structures known as amyloid plaques 
and tangles, which disrupt the normal functioning of nerve cells. In the 
early stages, Alzheimer's primarily affects specific brain regions like 
the hippocampus and entorhinal cortex, which are crucial for memory. 
Over time, it spreads to other areas, causing widespread damage and 
neuronal loss. Memory problems are typically the initial noticeable 
symptoms of cognitive decline in Alzheimer's disease, including 
conditions like Mild Cognitive Impairment (MCI). Individuals with 
MCI experience greater difficulties with memory compared to others 
their age, although these challenges may not significantly interfere 
with their daily activities. MCI can also be associated with other issues 
such as changes in sense of smell or problems with movement. With 
proper care and therapeutic interventions, individuals with MCI have 
the potential to regain their normal cognitive function.

Machine learning models have emerged as valuable tools in improving 
disease prediction accuracy, including in the context of Alzheimer's 
disease. These models enable doctors and researchers to better identify 
individuals who may benefit from preventative care while avoiding 
unnecessary medication for others5. In the field of Alzheimer's disease, 
machine learning techniques have been applied to various data types, 
including neuroimaging data, genetic data, and clinical data. These 
models have shown promise in aiding early diagnosis, predicting 
disease progression, and identifying individuals at risk of developing 
Alzheimer's disease. One area where machine learning has made 
significant contributions in Alzheimer's research is neuroimaging 
analysis. By utilizing advanced neural network models, machine 
learning algorithms can analyze brain MRI or PET scans to identify 
biomarkers and patterns associated with Alzheimer's disease. These 
models can detect subtle structural or functional changes in the brain 
that may indicate the presence or progression of the disease6. This early 
detection can help initiate interventions and treatments at a stage when 
they are most effective.

The tremendous computational power and storage capacity available 
today have enabled the development of highly accurate machine 
learning models. However, these models often lack transparency, 
making it challenging to comprehend the rationale behind their 
predictions. The complexity of these models, particularly neural 
networks with multiple layers and interconnected links, makes it 
nearly impossible to fully comprehend the decision-making process, 
even through extensive examination of the model's internal workings7. 
The inability to interpret complex models has posed limitations on 
the practical application of machine learning methods and has raised 
concerns about the reliability and trustworthiness of these models. 
Despite achieving high accuracy, the lack of interpretability undermines 
the transparency and understanding required to gain insights from the 
model's predictions.

In essence, the inherent complexity of neural networks and other 
sophisticated models hinders our ability to fully grasp how they arrive 
at specific decisions. This challenge has sparked ongoing research 
and efforts to develop methods for interpreting and explaining the 
reasoning behind machine learning predictions, aiming to enhance 
the transparency and trustworthiness of these models. As a result, 

deep learning is frequently referred to as a "black box." In several 
application sectors, there is growing concern that these black boxes 
may be biased. This can have significant implications, particularly in 
medical contexts. Hence, it is crucial to obtain explanations for the 
decisions made by AI models. Providing explanations serves two 
important purposes: building trust and detecting potential biases in 
the system. It is necessary to have explanations that are contextual 
and understandable to users. The demand for explainable AI (XAI) 
arises from ethical concerns surrounding the lack of transparency in 
AI systems, particularly in the healthcare domain8. XAI methods are 
employed to describe AI models and their predictions, addressing the 
limitations of black-box machine learning algorithms, for instance, 
neural networks, which are difficult to interpret5.

By utilizing explainable AI, the complex interactions between risk 
factor parameters and their independent implications on outcomes 
can be better understood5. In vital applications like healthcare, it is 
crucial for AI models to be understandable to humans. Users need to 
develop confidence in the model and comprehend how it generates its 
results. This understanding allows medical practitioners to make more 
informed decisions and assess whether a prediction aligns with relevant 
features and factors9. XAI techniques can be differentiated based on 
various criteria. One such criterion is post-hoc explainability and 
ante-hoc explainability, as discussed by8 and7. Post-hoc explainability 
focuses on explaining the model's predictions in terms that are 
easily interpretable. It involves training a neural network and then 
making efforts to describe the behavior of the resulting "black box" 
network. Contrarily, ante-hoc explainability explicitly incorporates 
explainability into the design of an AI model. It aims to design neural 
networks that are inherently explainable. Another criterion is model-
agnostic versus model-specific explanations, as described by7. Model-
agnostic explanations are independent of the type of neural network 
used and focus solely on the network's input and output. They allow 
users to understand how changes in the input affect the network's 
output. In contrast, certain types of models can only be used using 
model-specific explanation strategies. However, limiting the neural 
networks that can be used in this approach may overlook networks that 
could potentially provide more accurate results based on the input data.

There have been several studies that have explored the use of 
explainable AI techniques for image classification especially in 
Alzheimer’s diagnosis10. Explore the application of convolutional neural 
networks (CNNs) for classifying different pathologies associated with 
Alzheimer's disease in brain MRI scans. They propose an interpretable 
CNN model that generates heatmaps, allowing visualization of the 
specific regions in the brain that are most indicative of each pathology, 
providing insights into the classification process. The study given in11, 
propose three effective methods for generating visual explanations 
from 3D convolutional neural networks (3D-CNNs) in the context of 
Alzheimer's disease classification. Their approaches include sensitivity 
analysis on hierarchical 3D image segmentation and visualization 
of network activations on a spatial map, demonstrating the ability to 
identify significant brain regions for accurate diagnosis of Alzheimer's 
disease. A comprehensive and interpretable model for Alzheimer's 
disease detection and prediction was proposed in12. By leveraging 
explainable artificial intelligence, the model enables accurate diagnosis 
and progression detection, empowering physicians with precise 
decision-making capabilities and providing accompanying explanations 
for each decision made. The TADPOLE challenge, the most 
comprehensive to date in terms of participants, subjects, and features, 
aimed to identify the best predictive data and methods for Alzheimer's 
disease progression. While tree-based ensemble methods emerged as 
the most effective, the challenge lacked insight into their contribution 
to accuracy and interpretability. The study by13 intensively compares 
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the top three TADPOLE models, investigates their meaningful features 
and quantifies their contribution to accuracy using SHapley Additive 
exPlanations (SHAP) values, shedding light on their performance 
and alignment with clinical knowledge14. Presents a comprehensive 
analysis of a large dataset to explore the early diagnosis of Alzheimer's 
disease, employing appropriate preprocessing techniques and training 
an XGBoost model with hyperparameter tuning. The study emphasizes 
the importance of interpretability using SHAP values, deriving valuable 
insights and challenging established hypotheses, while achieving a 
competitive f1-score of 0.84 and providing additional knowledge for 
physicians in the accurate diagnosis of early-stage Alzheimer's disease. 
In this paper, our objective is to leverage these interpretability methods 
to classify cases of dementia and non-dementia. By incorporating 
XAI techniques into our machine learning models, we aim to not only 
improve the accuracy of the classification but also provide meaningful 
explanations for the predictions made. This will enable healthcare 
professionals and researchers to gain valuable insights into the features 
and regions of the brain that are indicative of Alzheimer's disease.

The subsequent sections of the paper will delve into the materials 
and methods used in our research (Section 2), outlining the specific 
techniques and models employed. We will then present the results 
obtained from our experiments (Section 3), highlighting the efficiency 
of the XAI techniques in improving the interpretability and accuracy of 
the classification. The conclusion section (Section 4) will summarize 
our findings and discuss the implications of our research. Finally, the 
paper will conclude with a comprehensive list of references, citing the 
relevant studies that have contributed to the field of explainable AI in 
Alzheimer's disease classification.

MATERIALS AND METHODS
Dataset: In this research, 150 persons between the ages of 60 and 96 
were examined using data from OASIS, more especially the OASIS-2 
dataset15. Over 373 imaging sessions, each subject underwent at least 
two examinations. All the participants were right-handed, male, and 
female; during the investigation, 72 of the subjects were determined to 
be normal. At the time of their initial visits, 64 of the study participants 
were identified as having dementia, and 51 as having mild to moderate 
Alzheimer's disease. In this development cohort, there were 160 men 
and 213 women, or 57% and 43% respectively. Out of 213 female 
patients, 84 (46%) were demented and 129 (68% of the total) were not. 
Similarly, out of a total of 160 men, 61 did not have dementia and 99 
did. The characteristics used in the study are Quantum Local Binary 
Pattern (QLBP), Age, Education, MMSE, CDR, Normalized whole-
brain volume (nWBV), Local Binary Pattern (LBP), Atlas Scaling 
Factor (ASF), and 14 Haralick features.

Variable selection: Feature ranking algorithms such as ANOVA, 
Chi-square, and the Kruskal-Walli’s test are commonly employed to 
address the curse of dimensionality by identifying the most relevant 
features. The Kruskal-Wallis test, a non-parametric statistical 
method introduced in16, is specifically used to determine statistically 
significant differences between a categorical independent variable 
and a continuous dependent variable. It assesses whether one sample 
stochastically dominates another by pooling and ranking the values of 
the dependent variable for each group. ANOVA, as described in17, is a 
statistical method utilized to compare means across two or more groups 
and determine if they are significantly different. The Chi-Square test18, 
as examines the independence between two events or variables. It 
measures the discrepancy between expected (E) and observed (O) 
counts, and higher Chi-Square values indicate greater dependence 
between features and the response variable, making them valuable for 
training models. Figure 1 depicts the potential variable using different 

feature ranking algorithms. It is observed from all the feature ranking 
algorithm that the features CDR and MMSE are more significant.

Figure 1: Feature relevance using Chi-Square, ANOVA, and Kruskal-
Wallis algorithms

Classification model: Achieving high accuracy is crucial when 
selecting a classifier, considering the wide range of options available. 
However, it's important to note that some highly accurate models may 
lack interpretability. Conversely, linear models may be transparent but 
not as accurate. It's crucial to comprehend the conflict between accuracy 
and interpretability to choose an algorithm with confidence. Figure 2 
in the study by19 depicts this trade-off, highlighting the relationship 
between interpretability and accuracy in different scenarios.

Figure 2: Interpretability vs Accuracy of ML models19

From Figure 2, it is evident that neural network, random forest, 
and support vector machine are very high accurate model with less 
interpretability and on the other hand decision trees, linear models 
and classification rules are more interpretable in nature but with less 
accuracy.

In this study, a neural network model is constructed using the top 
10 features from 25 features identified through the Kruskal-Wallis 
algorithm obtained from 150 observations. The algorithm involves 
training a neural network with 10 input features derived from Alzheimer's 
data using the Stochastic Gradient Descent with Momentum (SGDM) 
optimization algorithm. The network includes one hidden layer, which 
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introduces non-linear transformations to capture complex relationships 
in the data. The network is initialized with random weights and biases, 
and the learning rate and momentum are set for the SGDM algorithm. 
During each iteration, forward propagation is performed to compute 
the output prediction based on the input features. The loss/cost function 
is calculated, and then backpropagation is applied to update the weights 
and biases using the computed gradients and the momentum update 
rule. This process is repeated until convergence or reaching the 
maximum number of iterations. 

Figure 3: The neural network architecture

To evaluate the model's performance, 15% of the data is reserved for 
testing, while training and validation are conducted on the remaining 
portion. Cross-validation with a k-fold value of 5 is employed to mitigate 
overfitting risks. Figure 3 visualizes the neural network architecture, 
highlighting how the 10 selected input features are connected to the 
single output. On the other hand, Figure 4 presents the confusion 
matrix, which displays the performance of the model in terms of true 
positives, false positives, true negatives, and false negatives.

Figure 4: The confusion matrix in classifying dementia from non-
dementia

Figure 5 showcases the Receiver Operating Characteristic (ROC) curve, 
providing insights into the model's trade-off between true positive rate 
and false positive rate at different classification thresholds. Additionally, 
Figure 5 also highlights the best validation epoch, indicating the point 
during training where the model achieved optimal performance. As per 
the confusion matrix, the training accuracy is 87.5, validation accuracy 
is 91.3, testing accuracy is 91.3 and the overall accuracy is 88.7. Figure 
5 a show the cross-entropy values for the various accuracies mentioned 
above. From the figure, it can be observed that the validation accuracy is 
high as much as 0.17691 from epoch 12. Figure 5 b shows the receiver 
operating characteristic curve for the selected neural network. The 
ROC value is 0.933 which is comparatively high for the classification 
of demented and non-demented cases.

Figure 5: a) Best validation performance b) ROC

Interpretable models: Based on the input features along with the 
hyper parameters, the classification model gives training, validation, 
and testing accuracy. Confusion matrix gives both demented and non-
demented true positive / true negative rates. A decision can be made 
based on all these factors whether a model is required. Even though the 
model provides 91.3% accuracy for the testing data, it is not addressing 
many details of the internal structure of the model. The current model 
lacks the ability to address important issues such as determining the 
most influential feature for achieving high accuracy, understanding the 
underlying reasons for the model's outcomes, identifying success and 
failure criteria, and establishing the level of trust in the model. These 
concerns arise due to the model's limited interpretability, which hinders 
our ability to gain meaningful insights. To overcome these limitations, 
it is crucial to develop a model that can provide explanations for its 
decisions, offer transparency on feature importance, clarify the reasons 
behind outcomes, define success and failure thresholds, and inspire 
confidence in its reliability. 

Figure 6: Overview of the method

As part of our research, we propose an approach to provide interpretable 
explanations for the complex neural network model. Our aim is to offer 
insights into the decision-making process of the model while remaining 
locally true to the classifier. By "interpretable explanation," we mean 
providing understandable and meaningful insights into why the model 
makes certain predictions or classifications. We want to address the need 
for transparency and trust in complex models by offering explanations 
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that can be easily understood and validated. These explanations will 
help users and stakeholders gain confidence in the model's predictions 
and understand the factors that contribute to its decision-making. The 
overview of the proposed method is given in Figure 6.

Local Model-Agnostic Explanations
Local Interpretable Model Agnostic Explanations (LIME): LIME 
(Local Interpretable Model-Agnostic Explanations) is a technique 
that aims to interpret specific predictions made by a model by locally 
estimating its behavior around those predictions20-22. It provides 
an interpretable representation of the model's decision-making 
process, which differs from the original features and is designed to 
be understandable to humans. The explanation produced by LIME is 
obtained by the following formula: 

ξ(x) =

In LIME, an explanation is defined as a model q that belongs to a 
class of potentially interpretable models, such as q linear models or 
decision trees. The complexity of the explanation  is measured by 

 The classification function  represents the probability that a 
given instance  belongs to a specific class. The proximity measure 
   captures the closeness between an instance  and  defining the 
locality around  To ensure interpretability and local fidelity, LIME 
minimizes the measure which quantifies the degree to which 
 approximates  within the defined locality. By minimizing  

and keeping  sufficiently low for human interpretability, LIME 
produces an explanation for a given prediction using the formula.

SHapley Additive exPlanations (SHAP): The SHAP (SHapley 
Additive exPlanations) approach is a powerful method for interpreting 
machine learning model outputs, providing a clear understanding of 
feature importance. The Shapley values theory, which has its roots 
in cooperative game theory, serves as its foundation. To explain how 
SHAP works, let's consider a classification problem. SHAP determines 
the contribution of each feature to a prediction provided by the model 
given the prediction. It does this by evaluating the impact of including 
each feature in all possible subsets of features and measuring the 
change in prediction accuracy. This process captures the interaction 
effects between features, providing a holistic view of their importance. 
Mathematically, the Shapley value for a specific feature is defined as 
the average marginal contribution of that feature across all possible 
feature combinations. It can be expressed as: 

where  represents the Shapley value for feature i,
 denotes the model's output when feature i is included in the 

subset S,
 is the model's output when feature i  is excluded from the subset S, 

n ,  is the total number of features?
By calculating the Shapley values for each feature, we obtain a 
comprehensive understanding of their individual contributions to the 
model's predictions. Using SHAP plots or summary plots, this data 
can be represented graphically, offering clear insights into the model's 
decision-making process, and assisting in the detection of biases or 
faults.

RESULTS AND DISCUSSION
LIME
The interpretation of LIME is done with Linear model based on 2 input 
instances, one from demented cases and other from non-demented 
case. In this case, Figure 7 displays the predictions obtained using 
LIME with a linear model for an instance from both demented and 

non-demented cases. The important aspect is that both the black box 
model (the original complex model being explained) and the linear 
model (a simpler and more interpretable model used for explanation) 
give the same prediction for the given input instances. This consistency 
provides confidence in the accuracy of the original neural network 
model. The plot in Figure 7 shows 10 predictions for the query point, 
providing insight into the variability of predictions. The horizontal 
bar graph presents the sorted predictor importance values, indicating 
which features are most influential in determining the prediction. In 
this case, LIME identifies CDR (Clinical Dementia Rating), MMSE 
(Mini-Mental State Examination), and nWBV (normalized Whole 
Brain Volume) as three important predictors for the query point.

Figure 7: a) LIME prediction with linear model for non-demented case 
b) LIME prediction with linear model for demented case

The interpretation reveals that when the CDR value increases, indicating 
a higher severity of dementia, the model tends to predict demented 
cases. Conversely, when the CDR value decreases, indicating a lower 
severity of dementia, the model tends to predict non-demented cases. 
Similarly, as the MMSE score increases, reflecting better cognitive 
function, the model leans towards predicting non-demented cases. 
On the other hand, as the MMSE score decreases, indicating poorer 
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cognitive function, the model leans towards predicting demented cases. 
These findings reinforce the accuracy of the neural network model and 
highlight the meaningful relationship between the predictors (CDR, 
MMSE, nWBV) and the prediction of dementia. By understanding and 
analyzing these predictor relationships, researchers and practitioners 
can gain insights into the decision-making process of the neural 
network model and build trust in its reliability.

It's important to note that the provided information focuses on a 
specific example, and the interpretability of complex machine learning 
models can vary depending on the dataset, model architecture, and 
specific domain. Therefore, it's always crucial to carefully interpret 
and validate the results in the context of the problem being addressed.

SHAP
The contribution of each feature to a particular prediction generated by 
a machine learning model is quantified by SHAP values. They offer a 
method to comprehend how the model generates its predictions and are 
specific to each prediction. The average marginal contribution of each 
feature over all potential coalitions that incorporate that characteristic 
is represented by a unique SHAP value for each occurrence. A positive 
SHAP value for a feature indicates that the expected probability of that 
instance rises as the value of the characteristic rises. If a feature has a 
negative SHAP value, it signifies that increasing its value will reduce 
the likelihood that the instance will occur. The following plots were 
created based on the decision tree model for all the test records and one 
demented record as a special case for more explainability.

Summary Bar Plot
The feature importance is plotted using a bar plot. The features are 
ranked according to how much influence they have on the model's 
prediction. The average absolute SHAP value for each feature is 
represented by the x-axis.

Figure 8: Mean SHAP value for all features

Figure 8 shows the average SHAP value of all selected features. From 
the figure, it is obvious that the CDR is the only most significant feature 
compared to all the features with mean SHAP values of more than 2.5. 
This is followed by nWBV and eTIV with an average SHAP value of 
0.5 and followed by Age, EDUC, MMSE and Gender. The remaining 
features do not contribute to the prediction of the disease.

Summary Dot Plot
The directionality impact of the attributes is visualized using dot plot 
charts. The x-axis of this graph exhibits the SHAP value, and the y-axis 

displays all the features. In the graph, each point corresponds to a single 
SHAP value for a prediction and a feature. A higher value for a feature 
is shown by red. Features with a lower value are indicated in blue. 
We can generalize the directionality influence of the characteristics 
according to the distribution of the red and blue dots.

Figure 9: SHAP values and feature importance

From the above Figure 8, the CDR feature is the most significant 
among all the features. The inference from the Figure is that a higher 
value of CDR leads to higher chance of dementia and lower value leads 
to lower chance of dementia. The next significant features are nWBV 
and eTIV, where these are opposite of the CDR feature. The higher 
value of nWBV and eTIV leads to lower chance of dementia and lower 
values lead to higher chance of dementia.

Waterfall Plot
The SHAP waterfall charts are a technique to see how various features 
contribute to the predictions of a classification model. A bar is used 
to symbolize each feature, and its length indicates how much it 
contributed to the prediction. The features are ordered in descending 
order of contribution, from top to bottom, with the one with the 
biggest contribution at the top. Whether the feature has a favorable or 
unfavorable impact on the forecast is indicated by the color of the bar. 

Figure 10: Waterfall plot for test record no 1

The waterfall plot shows in Figure 10 the SHAP values on X axis and 
all features with their corresponding value for a selected test data is 
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available in Y axis. The red color represents the demented cases and 
blue color represent the non-demented outcome. From the plot, the 
feature CDR has the highest impact in producing the predicted output 
as demented and which is same as the actual outcome. The other feature 
contributing to the correct outcome is gender. The features eTIV, age, 
nWBV and EDUC are contributing for the non-demented outcome 
which are incorrect with the actual prediction.

Force Plot
The standard technique for displaying specific model predictions is a 
SHAP force plot. The probability that a person has dementia or not 
is predicted. Red arrows indicate feature effects (SHAP values) that 
drive the prediction value higher, and blue arrows indicate feature 
effects that drive it lower. Each arrow's size indicates the strength 
of the characteristic's effect. According to Figure 11, the base value, 
which is equal to 2.93, represents the model's average prediction over 
the training set. From the figure it is again explicitly shown that the 
CDR feature is the main contributor for the correct prediction for the 
selected feature set.

Figure 11: Force plot for test record no 1

Decision Plot
Decision plots are straightforward to interpret since they are direct 
representations of SHAP values. The model's base value is indicated 
by the straight vertical line in the decision plot. The prediction appears 
as a colored line. For reference, feature values are presented next to 
the prediction line. The prediction line depicts how the SHAP values 
add up from the plot to the ultimate score of the model at the top. The 
figure shows that the major contributors for the prediction of the correct 
outcome demented are the CDR followed by eTIV, Age and nWBV.

Figure 12: Force plot for test record no 1

CONCLUSION AND FUTURE
In this study, the focus was on developing a machine learning model 
that not only achieves high accuracy in detecting Alzheimer's disease 
but also ensures interpretability of its predictions. Alzheimer's disease 
poses significant challenges for the elderly population, leading to 
increased disorientation, memory loss, and other cognitive impairments. 
Therefore, it is crucial to have a reliable and transparent diagnostic tool 
that can aid in early detection and appropriate intervention.

One of the main hurdles in achieving interpretability lies in the inherent 
non-linearity of highly accurate machine learning models. These 
models, while effective in making accurate predictions, often lack 
transparency, making it difficult for non-technical stakeholders, such 
as clinicians, caregivers, and patients, to comprehend the underlying 
reasoning behind the model's predictions. To address this, this research 
employed two popular explainable AI techniques, namely LIME and 
SHAP, which offer insights into the decision-making process of complex 
models. By utilizing LIME, the researchers were able to interpret the 
model's predictions based on two input instances: one from demented 
cases and the other from non-demented cases. The linear model derived 
from LIME provided a clear understanding of the impact of various 
features on predictions. It was observed that features like CDR, Age, 
and ASF played a positive role in predicting dementia cases, aligning 
with clinical knowledge. Conversely, features such as nWBV, MMSE, 
and eTIV had a negative impact on the predictions, indicating their 
relevance in differentiating non-demented cases. Similarly, the analysis 
of SHAP values provided a comprehensive understanding of the 
model's decision-making process in Alzheimer's disease detection. The 
findings reaffirmed the significance of features like CDR, nWBV, and 
eTIV in predicting the disease, while highlighting the limited impact 
of certain other features. By leveraging the interpretability offered by 
SHAP values, the developed model gains transparency and reliability, 
aiding in the diagnosis and management of Alzheimer's disease.

Moreover, the researchers recognized the importance of expanding the 
scope of the work to enhance the model's accuracy and applicability. 
Suggestions for future research included validating the model with 
larger datasets to assess its generalizability across diverse populations. 
Additionally, incorporating multimodal data, such as brain imaging or 
genetic markers, could further improve the accuracy and interpretability 
of the model. The involvement of healthcare professionals and experts 
in the validation process would help ensure the model's effectiveness 
in real-world clinical settings. Overall, the combination of accuracy 
and interpretability in the detection of Alzheimer's disease holds 
great promise. By leveraging XAI techniques, incorporating diverse 
datasets, and addressing practical considerations, this research aims to 
provide a reliable and transparent tool for early detection, monitoring, 
and personalized interventions in the context of Alzheimer's disease.
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